Research Statement

Ross Duncan

RESEARCH THEMES: Quantum computing; quantum foundations;
theory of computation; verification and correctness; categorical logic and
algebra; graph rewriting and graphical methods; visual computer languages.

Overview

The vast majority of current research in quantum computation is extremely
low-level, in the sense of being intimately tied to particular implementation
or architectural choices, or based on the meagre abstraction from a concrete
physical system to the qubit. We rarely view our classical computers as arrays
of naked bits, and in the quantum realm the need for a structured, high-level
perspective is even more pressing. From this point of view, the usual Hilbert
space formulation of quantum mechanics is akin to programming in raw
binary code. However, reformulating quantum theory in the language of
category theory offers a high-level perspective which exposes enough structure
to work with, without burying us beneath a mass of irrelevant detail.

In classical computer science, category theory is widely used to give
semantics to programsﬂ Such mathematical understanding is a necessary
basis for strongly-typed programming languages and other tools to deliver
reliable software. Categorical quantum mecham’cﬂ seeks similar categorical
foundations for quantum theory, and in particular quantum computation.
Remarkably, a great deal of quantum mechanics can be formalised in the
language of monoidal categories with only a little extra structure. Adopting
this approach allows us to work at an appropriate level of abstraction: hiding
low-level details when possible, and exposing the physical specifics when
needed.

Past Research Highlights

Interacting Algebras as a foundation for quantum computing Quan-
tum theory is naturally 2-dimensional, since the sequential composition of

!Classical examples: functional programming languages [39], side-effects [42] and data
types [30].
*Initiated by Abramsky and Coecke [I]



linear operators, and their parallel composition by tensor product, interact in
a highly non-trivial way. Therefore studying quantum mechanics within the
framework of monoidal categories is a natural and profitable choice. With
various collaborators, I have pursued the development of quantum theory in
terms of algebraic objects which can be expressed purely in the language of
monoidal categories, without reference to Hilbert spaces.

Building on earlier work [8] which showed that quantum observables can
be formalised as Frobenius algebras, we discovered [9] that the Frobenius
algebras corresponding to a complementary pair of observables jointly form a
Hopf algebra. Behind these words are a few simple axioms whose equational
theory is sufficient to derive a large fraction of quantum theory. Even
better, all of this can be done in a beautiful pictorial language which makes
calculations very simpleﬂ

Various connections have been established between these abstract alge-
braic results and concrete quantum computation. For example, the equiva-
lence of graph states via local complementation [48] is equivalent to the fact
that the Hadamard map can be decomposed into more primitive rotations
[25]. Later work [11] showed that these algebras are both necessary and
sufficient for Mermin non-locality [41]. Most recently we showed that these
algebras exist generically for any complementary observables with given
dynamics [23]. This opens the door for work proposed in the next section.

Surprisingly, this previously unstudied combination of Frobenius and
Hopf algebras has since appeared in range of other application domains
including natural language processing [34], control theory [2], and distributed
computing [46]. This suggests that these structures may also be a useful
handle for quantum algorithms in these domains.

The zx-calculus: reasoning about quantum processes In the frame-
work of interacting algebras, by restricting attention to qubits and considering
the specific case of the Pauli Z and X observables we obtain the zZX-calculus,
a formal theory for reasoning about quantum computation [9]. In the zX-
calculus, an algorithm or protocol is presented as a diagram, similar to
an electronic circuit diagram; the equations of the theory are then given
as graph rewrite rules. The graphical notation directly exposes many fea-
tures of quantum systems and is particularly well adapted to the study of
entanglement.

The zX-calculus is universal, in the sense that any quantum state or
operation can be represented, and reproduces common circuit identities and
commutation relations [10]. Perhaps unsurprisingly, graph states have a
very simple presentation, and the whole framework of measurement-based
quantum computing [44] fit very comfortably in the calculus [22]. However

3The forthcoming textbook [I3] offers a “first course in quantum theory” based on these
ideas.



Figure 1: The zx-calculus in action: an MBQC implementation (top-left) is
verified by rewriting it to its specification, a single CNOT-gate (bottom-right)

since the zX-calculus is about the underlying algebra of observables rather
than some gate set or other translation between models is rather easy. In [21],
we showed that a quantum computation implemented in the one-way model
can be rewritten into an equivalent quantum circuit without any ancillae.
Further, since this procedure is given by a rewrite strategy, it can be used to
show that the given MBQC program is free of (certain) programming errors;
see Figure [1] for an example.

The zX-calculus has also been used to formalise and verify quantum error
correcting codes [24][36], the major algorithms [50, 13], and a variety of
communication protocols [35].

Reasoning in 2 Dimensions: string diagrams A distinctive feature of
monoidal categories is the use of string diagrams in place of conventional
mathematical syntax. String diagrams are 2-dimensional notation that offers
a huge improvement in terms of simplicity and clarity. Such diagrams are used
widely categorical quantum mechanics — for example in the zX-calculus—
but have also been adopted in such diverse areas as quantum thermodynamics
[7], functional programming [43], and asynchronous circuits [29].

However the graphical syntax is itself a mathematical object, and to be
confident that reasoning by rewriting is sounds it was necessary to formalise
it. This was partially achieved in my thesis [20]; the completed theory
[18, 19] is closely related to conventional DPO rewriting [26]. However, since
the axioms of the zX-calculus are most usefully presented as an infinite
axiom schema, reasoning about concrete graphs is inadequate for practical
purposes: we need to represent the whole schema as a single finite object.
We introduced the notion of graph pattern [17] to address this problem.

When dealing with large or complex systems, manipulating the diagram-
matic syntax can become laborious and error-prone. The tool Quantomatic
[16] allows the user to construct such diagrams and to manipulate them using



arbitrary rewrite rules. The program is not restricted to quantum theory: it
can work with any graphical language. Quantomatic has been used to verify
the correctness of a various quantum protocols [24][35].

Proposed Research

The work described in the previous section is quite abstract. My aim in
joining QuSoft is to apply this theoretical approach to concrete quantum
devices. My work offers many opportunities for the development of quantum
software.

The zx-calculus and its generalisations represent the algebra of quantum
mechanics itself rather any particular physical system or model of quantum
computation. Since, for general reasons, the interacting algebras of the
theory exist in any quantum system, they offer a universal framework for
quantum computation. This means that the zx-calculus is uniquely well-
placed to serve as an intermediate representation for all kinds of quantum
software, decoupled from the implementation technology, targetable from
any programming system. Since we have basically no idea what the eventual
hardware is going to look like, a platform independent approach to quantum
software is absolutely necessary.

The zX-calculus has a rich equational theory which makes possible a
variety of useful transformations of the program, including optimisation,
simulation, and partial evaluation. Since the structures involved are generic,
zX-calculus terms can be faithfully translated not only to the physics im-
plementing the computer, but also to automatically add error correction
schemes, or change the gate set.

The ultimate goal of the research proposed below is to construct a
complete toolchain for the development of quantum software for use in
practical quantum algorithms and realistic devices. This will be built by
adapting and generalising the existing zx-calculus formalism to serve as
the intermediate representation of an optimising retargetable compiler. The
development of such a platform-agnostic middle layer will bring numerous
benefits to the work of QuSoft.

Short Term Goals

ZX for concrete implementations The zx-calculus is based on an ideal
qubit. Real implementations of qubits inevitably deviate from this ideal, by
having additional energy levels, non-negligible back action of measurement,
or any number of other ways. Further, the quantum logic gates will rarely be
atomic operations at the physical level. However, all quantum observables
admit a zX-calculus-like formulation [23], hence it is possible to formalise the
implementation of the qubit in the same kind of language as its ideal version.
I propose to study concrete qubit implementations and produce “zX-calculi”



for them, incorporating the specifities of their physics into the formalism.
Two obvious candidates for this study are superconducting qubits [15] [45]
and diamond NV spin qubits [6].

Formalisation of existing protocols and algorithms 1 propose to
formalise and prove the correctness of a wide variety of quantum algorithms
and protocols in the zX-calculus, both in their textbook versions and, where
possible, as implemented on real hardware. Many algorithms have already
been formalised this way (see e.g. [51]) at least in the textbook version;
however error correcting codes and fault tolerant operations have largely
been ignored so I will concentrate on these. The aim of doing this is two-fold.
Firstly to discover which parts of the algebraic structure the algorithms
rely upon, and to discover if something essential is missing from the axioms.
Secondly, we will build up a library of verified building blocks which may be
combined into larger programs, to facilitate high-level programming.

Homomorphic programming and compilation One of the main ad-
vantages of using category theory is that it provides a systematic way of
transporting structure from one setting to anothelﬂ This realisation is at
the heart of this proposal. By providing functors from, say, the category of
zX-calculus terms, to the category of codewords and fault-tolerant gates, to
the category of observables of our implementing hardware, we implement
a compilation procedure from a textbook presentation of an algorithm to
the version which can run on the hardware. By functoriality, we don’t just
transport the program, but also all the program transformations too, so that
any rewriting performed can be soundly transported to the next stage (and
in certain cases, reflected back to the previous one).

One additional task here is understand which graphical terms are actually
runnable on a given architecture. For example, not all ZX-calculus terms are
quantum circuits; we provide a graph theoretic characterisation to recognise
them [22].

Extending the graphical formalism The graphical notation developed
for categorical quantum mechanics is extremely readable for humans and
corresponds well to quantum circuits. However graphs are finite objects,
whereas we often wish to handle algorithms which are described by a uniform
family of circuits rather than a single circuit. To permit this it was necessary
to introduce graph patterns [18], a simple “regular expression” language for
graphs. A key objective is to extend the existing (rudimentary) pattern
language to more expressive forms, and to develop techniques for handling
recursion and induction inside more expressive graphical languages. Such
development would permit the familiar constructs of classical programming

4The other main advantage is that everything is compositional.



languages inside the graphical calculus. Work on this problem, based on
operads [40} 38|, 47], is currently in progress.

Long Term Goals

Quantitative aspects The mainstream quantum information processing
literature abounds with numbers: Bell inequalities, entropies, measures
of entanglement or dischord, channel capacities, error rates, and many
others. In contrast, the existing work in the categorical quantum mechanics
programme and is almost entirely qualitative. While the framework allows
for the calculation of probabilities, this aspect of quantum mechanics is
largely neglected. The addition of an expressive quantitative aspect to the
framework is a crucial task.

Various researchers have treated specific aspects of this problem [3],
[14, 7, 28, 27]. The most direct route to this goal appears to be via unification
of general probabilistic theories [4] and general compositional theories [12].
Such a unification would permit the treatment of device independence within
the categorical framework.

Verification of quantum programs via rewriting Verifying that a
program meets its specification is famously difficult. Using zX-calculus
quantum programs may be optimised, or their execution simulated, or their
correctness checked. To repeat an example described above, a one-way
program can be rewritten to an equivalent quantum circuit: the success of
this procedure is a correctness proof of the original program, while its failure
produces a certificate of a bug |21}, 22]. This is pure equational reasoning;
however once pattern graphs (see above) enter the picture inductive reasoning
is possible [37]. The extended notion of pattern graph we propose above will
give rise almost automatically to induction principles, however it should be
possible to go further. We aim to develop a rich program logic based on
using graph patterns as modal formulae.

Automated Reasoning Rewriting diagrams is time consuming and error-
prone when done by hand. Machine support is therefore essential to large-
scale use of these techniques. The existing interactive graphical proof-
assistant Quantomatic [16] provides a good starting point for mechanised
implementation of the compilation procedure described above. It will be
necessary to develop rewriting strategies to effect the desired program trans-
formations, and theorem proving tactics to establish their properties with
minimal human intervention. This is less fanciful than it sounds: Quan-
tomatic is the software underlying the PSGraph/Tinker toolset [32], B3],
which is used for the verification of safety critical software for the automotive
industry.



Quantum programming with dependent types The story so far has
focussed on the back end of the compiler, but of course there should also be
a language to compile. The technology developed for the previous objectives
would amount to a mechanisation of a significant chunk of quantum theory.
It is my final proposal to design a high-level quantum programming language
with dependent types in the style of Agda [5]: that is, a language whose
type system is able to enforce strong guarantees about the behaviour of
the programs. Unlike extant quantum programming languages [31], [49], the
proposed language could take advantage of the zx-calculus to reason about
quantum mechanics as part of its typing judgements. This might enable, for
example, the compiler to automatically insert the appropriate number of
rounds of distillation into an entanglement using protocol. Evidently, this
requires the earlier phases of this proposal to be at least partially completed,
and is by far the most speculative thing listed here.
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