diff --git a/NEWPROPOSAL/quantera.bib b/NEWPROPOSAL/quantera.bib
index b0b273886ceea45ebfc7e2e3a0a51b6dbbafaeb9..672813ce7578f3cf68c0aa6a1889a49e1cee5a8b 100644
--- a/NEWPROPOSAL/quantera.bib
+++ b/NEWPROPOSAL/quantera.bib
@@ -88,7 +88,7 @@
 
 
 @InProceedings{HFW,
-  author = 	 {Amar Hadzihasanovic, Kang Feng Ng and Quanlong Wang},
+  author = 	 {Amar Hadzihasanovic and Kang Feng Ng and Quanlong Wang},
   title = 	 {Two complete axiomatisations of pure-state qubit quantum computing},
   booktitle =    "ACM/IEEE Symposium on
 Logic in Computer Science (LICS)",
@@ -96,7 +96,7 @@ Logic in Computer Science (LICS)",
 
 @InProceedings{JPV-2018,
   author = 	 {Emmanuel Jeandel and Simon Perdrix and Renaud Vilmart},
-  title = 	 {Diagrammatic Reasoning beyond Clifford+T Quantum Mechanics},
+  title = 	 {Diagrammatic Reasoning beyond {Clifford+T} Quantum Mechanics},
   booktitle =    "ACM/IEEE Symposium on
 Logic in Computer Science (LICS)",
   year =          2018}
@@ -11666,7 +11666,7 @@ categories [JS91] and dagger pivotal categories [Sel09].
 	Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8Qbi4uLy4uLy4uLy4uLy4uL0RvY3VtZW50cy9SZWFkaW5nL1NjaWVuY2UvcGFwZXJzL0Jvc2UvTXVsdGlwYXJ0aWNsZSBnZW5lcmFsaXNhdGlvbiBvZiBlbnRhbmdsZW1lbnQgc3dhcHBpbmcucGRm0hcLGBlXTlMuZGF0YU8RAloAAAAAAloAAgAADE1hY2ludG9zaCBIRAAAAAAAAAAAAAAAAAAAAM6YhwJIKwAAACCTsx9NdWx0aXBhcnRpY2xlIGdlbmVyYSMyMDk3MkYucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIJcvutK+hwAAAAAAAAAAAAUABgAACSAAAAAAAAAAAAAAAAAAAAAEQm9zZQAQAAgAAM6YePIAAAARAAgAALrSomcAAAABABwAIJOzACcDGQAnAxgAJwMXAAqORQAKjkQAAmR8AAIAaE1hY2ludG9zaCBIRDpVc2VyczoAa3diMTMyMTU6AERvY3VtZW50czoAUmVhZGluZzoAU2NpZW5jZToAcGFwZXJzOgBCb3NlOgBNdWx0aXBhcnRpY2xlIGdlbmVyYSMyMDk3MkYucGRmAA4AdAA5AE0AdQBsAHQAaQBwAGEAcgB0AGkAYwBsAGUAIABnAGUAbgBlAHIAYQBsAGkAcwBhAHQAaQBvAG4AIABvAGYAIABlAG4AdABhAG4AZwBsAGUAbQBlAG4AdAAgAHMAdwBhAHAAcABpAG4AZwAuAHAAZABmAA8AGgAMAE0AYQBjAGkAbgB0AG8AcwBoACAASABEABIAblVzZXJzL2t3YjEzMjE1L0RvY3VtZW50cy9SZWFkaW5nL1NjaWVuY2UvcGFwZXJzL0Jvc2UvTXVsdGlwYXJ0aWNsZSBnZW5lcmFsaXNhdGlvbiBvZiBlbnRhbmdsZW1lbnQgc3dhcHBpbmcucGRmABMAAS8AABUAAgAP//8AAIAG0hscHR5aJGNsYXNzbmFtZVgkY2xhc3Nlc11OU011dGFibGVEYXRhox0fIFZOU0RhdGFYTlNPYmplY3TSGxwiI1xOU0RpY3Rpb25hcnmiIiBfEA9OU0tleWVkQXJjaGl2ZXLRJidUcm9vdIABAAgAEQAaACMALQAyADcAQABGAE0AVQBgAGcAagBsAG4AcQBzAHUAdwCEAI4A/wEEAQwDagNsA3EDfAOFA5MDlwOeA6cDrAO5A7wDzgPRA9YAAAAAAAACAQAAAAAAAAAoAAAAAAAAAAAAAAAAAAAD2A==}}
 
 @article{Bouda2001Entanglement-Sw,
-	Abstract = {We generalize the entanglement swapping scheme originally proposed for two pairs of qubits to an arbitrary number q of systems composed from an arbitrary number m_j of qudits. Each of the systems is supposed to be prepared in a maximally entangled state of m_j qudits, while different systems are not correlated at all. We show that when a set of � $\Sigma^q_{j =1} a_j$ particles (from each of the q systems a_j particles are measured) is subjected to a generalized Bell type measurement, the resulting set of $\Sigma^q_{j =1}(m_j  a_j )$ particles will collapse into a maximally entangled state. },
+	Abstract = {We generalize the entanglement swapping scheme originally proposed for two pairs of qubits to an arbitrary number q of systems composed from an arbitrary number m_j of qudits. Each of the systems is supposed to be prepared in a maximally entangled state of m_j qudits, while different systems are not correlated at all. We show that when a set of \00 $\Sigma^q_{j =1} a_j$ particles (from each of the q systems a_j particles are measured) is subjected to a generalized Bell type measurement, the resulting set of $\Sigma^q_{j =1}(m_j  a_j )$ particles will collapse into a maximally entangled state. },
 	Author = {Bouda, J. and Buzek, V.},
 	Date-Added = {2015-01-16 00:04:47 +0000},
 	Date-Modified = {2015-01-16 00:04:48 +0000},
@@ -12294,7 +12294,7 @@ categories [JS91] and dagger pivotal categories [Sel09].
 	Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QbC4uLy4uLy4uLy4uLy4uL0RvY3VtZW50cy9SZWFkaW5nL1NjaWVuY2UvcGFwZXJzL0NhcnJvbGwvQSBOby1Ob25zZW5zZSBJbnRyb2R1Y3Rpb24gdG8gR2VuZXJhbCBSZWxhdGl2aXR5LnBkZtIXCxgZV05TLmRhdGFPEQJWAAAAAAJWAAIAAAxNYWNpbnRvc2ggSEQAAAAAAAAAAAAAAAAAAADOmIcCSCsAAAAgk8ofQSBOby1Ob25zZW5zZSBJbnRyb2QjMjA5NzBELnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACCXDbqDNZEAAAAAAAAAAAAFAAYAAAkgAAAAAAAAAAAAAAAAAAAAB0NhcnJvbGwAABAACAAAzph48gAAABEACAAAuoMngQAAAAEAHAAgk8oAJwMZACcDGAAnAxcACo5FAAqORAACZHwAAgBrTWFjaW50b3NoIEhEOlVzZXJzOgBrd2IxMzIxNToARG9jdW1lbnRzOgBSZWFkaW5nOgBTY2llbmNlOgBwYXBlcnM6AENhcnJvbGw6AEEgTm8tTm9uc2Vuc2UgSW50cm9kIzIwOTcwRC5wZGYAAA4AagA0AEEAIABOAG8ALQBOAG8AbgBzAGUAbgBzAGUAIABJAG4AdAByAG8AZAB1AGMAdABpAG8AbgAgAHQAbwAgAEcAZQBuAGUAcgBhAGwAIABSAGUAbABhAHQAaQB2AGkAdAB5AC4AcABkAGYADwAaAAwATQBhAGMAaQBuAHQAbwBzAGgAIABIAEQAEgBsVXNlcnMva3diMTMyMTUvRG9jdW1lbnRzL1JlYWRpbmcvU2NpZW5jZS9wYXBlcnMvQ2Fycm9sbC9BIE5vLU5vbnNlbnNlIEludHJvZHVjdGlvbiB0byBHZW5lcmFsIFJlbGF0aXZpdHkucGRmABMAAS8AABUAAgAP//8AAIAG0hscHR5aJGNsYXNzbmFtZVgkY2xhc3Nlc11OU011dGFibGVEYXRhox0fIFZOU0RhdGFYTlNPYmplY3TSGxwiI1xOU0RpY3Rpb25hcnmiIiBfEA9OU0tleWVkQXJjaGl2ZXLRJidUcm9vdIABAAgAEQAaACMALQAyADcAQABGAE0AVQBgAGcAagBsAG4AcQBzAHUAdwCEAI4A/QECAQoDZANmA2sDdgN/A40DkQOYA6EDpgOzA7YDyAPLA9AAAAAAAAACAQAAAAAAAAAoAAAAAAAAAAAAAAAAAAAD0g==}}
 
 @article{Blute2000Feedback-for-li,
-	Abstract = {In the present paper, we develop the notion of a trace operator on a linearly distributive category, which amounts to essentially working within a subcategory (the core) which has the same sort of ``type degeneracy'' as a compact closed category. We also explore the possibility that an object may have several trace structures, introducing a notion of compatibility in this case. We show that if we restrict to compatible classes of trace operators, an object may have at most one trace structure (for a given tensor structure). We give a linearly distributive version of the ``geometry of interaction'' construction, and verify that we obtain a linearly distributive category in which traces become canonical. We explore the relationship between our notions of trace and �fixpoint operators, and show that an object admits a fi�xpoint combinator precisely when it admits a trace and is a cocommutative comonoid. This generalises an observation of Hyland and Hasegawa. },
+	Abstract = {In the present paper, we develop the notion of a trace operator on a linearly distributive category, which amounts to essentially working within a subcategory (the core) which has the same sort of ``type degeneracy'' as a compact closed category. We also explore the possibility that an object may have several trace structures, introducing a notion of compatibility in this case. We show that if we restrict to compatible classes of trace operators, an object may have at most one trace structure (for a given tensor structure). We give a linearly distributive version of the ``geometry of interaction'' construction, and verify that we obtain a linearly distributive category in which traces become canonical. We explore the relationship between our notions of trace and \00fixpoint operators, and show that an object admits a fi\00xpoint combinator precisely when it admits a trace and is a cocommutative comonoid. This generalises an observation of Hyland and Hasegawa. },
 	Author = {Blute, R.F. and Cockett, J.R.B and Seely, R.A.G.},
 	Date-Added = {2015-01-16 00:04:47 +0000},
 	Date-Modified = {2015-01-16 00:04:48 +0000},
@@ -12376,7 +12376,7 @@ categories [JS91] and dagger pivotal categories [Sel09].
 	Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QUy4uLy4uLy4uLy4uLy4uL0RvY3VtZW50cy9SZWFkaW5nL1NjaWVuY2UvcGFwZXJzL0xvb2NrL011bHRpcGFydGl0ZSBFbnRhbmdsZW1lbnQucGRm0hcLGBlXTlMuZGF0YU8RAgoAAAAAAgoAAgAADE1hY2ludG9zaCBIRAAAAAAAAAAAAAAAAAAAAM6YhwJIKwAAACCUYx1NdWx0aXBhcnRpdGUgRW50YW5nbGVtZW50LnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIJXUv0Ce2wAAAAAAAAAAAAUABgAACSAAAAAAAAAAAAAAAAAAAAAFTG9vY2sAABAACAAAzph48gAAABEACAAAv0CCuwAAAAEAHAAglGMAJwMZACcDGAAnAxcACo5FAAqORAACZHwAAgBnTWFjaW50b3NoIEhEOlVzZXJzOgBrd2IxMzIxNToARG9jdW1lbnRzOgBSZWFkaW5nOgBTY2llbmNlOgBwYXBlcnM6AExvb2NrOgBNdWx0aXBhcnRpdGUgRW50YW5nbGVtZW50LnBkZgAADgA8AB0ATQB1AGwAdABpAHAAYQByAHQAaQB0AGUAIABFAG4AdABhAG4AZwBsAGUAbQBlAG4AdAAuAHAAZABmAA8AGgAMAE0AYQBjAGkAbgB0AG8AcwBoACAASABEABIAU1VzZXJzL2t3YjEzMjE1L0RvY3VtZW50cy9SZWFkaW5nL1NjaWVuY2UvcGFwZXJzL0xvb2NrL011bHRpcGFydGl0ZSBFbnRhbmdsZW1lbnQucGRmAAATAAEvAAAVAAIAD///AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOAOQA6QDxAv8DAQMGAxEDGgMoAywDMwM8A0EDTgNRA2MDZgNrAAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAAA20=}}
 
 @electronic{Brus2001Characterizing-,
-	Abstract = {Quantum entanglement is at the heart of many tasks in quantum information. Apart from simple cases (low dimensions, few particles, pure states), however, the mathematical structure of entangle�ment is not yet fully understood. This tutorial is an introduction to our present knowledge about how to decide whether a given state is separable or entangled, how to characterize entanglement via witness operators, how to classify entangled states according to their usefulness (i.e. distillability), and how to quantify entanglement with appropriate measures. },
+	Abstract = {Quantum entanglement is at the heart of many tasks in quantum information. Apart from simple cases (low dimensions, few particles, pure states), however, the mathematical structure of entangle\00ment is not yet fully understood. This tutorial is an introduction to our present knowledge about how to decide whether a given state is separable or entangled, how to characterize entanglement via witness operators, how to classify entangled states according to their usefulness (i.e. distillability), and how to quantify entanglement with appropriate measures. },
 	Author = {Bru{\ss}, D.},
 	Date-Added = {2015-01-16 00:04:47 +0000},
 	Date-Modified = {2015-01-16 00:04:48 +0000},
@@ -12388,7 +12388,7 @@ categories [JS91] and dagger pivotal categories [Sel09].
 	Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YW8QVAAuAC4ALwAuAC4ALwAuAC4ALwAuAC4ALwAuAC4ALwBEAG8AYwB1AG0AZQBuAHQAcwAvAFIAZQBhAGQAaQBuAGcALwBTAGMAaQBlAG4AYwBlAC8AcABhAHAAZQByAHMALwBCAHIAdQDfAC8AQwBoAGEAcgBhAGMAdABlAHIAaQB6AGkAbgBnACAARQBuAHQAYQBuAGcAbABlAG0AZQBuAHQALgBwAGQAZtIXCxgZV05TLmRhdGFPEQIOAAAAAAIOAAIAAAxNYWNpbnRvc2ggSEQAAAAAAAAAAAAAAAAAAADOmIcCSCsAAAAgk8MfQ2hhcmFjdGVyaXppbmcgRW50YW5nbGVtZW50LnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACCXF79C3toAAAAAAAAAAAAFAAYAAAkgAAAAAAAAAAAAAAAAAAAABEJydacAEAAIAADOmHjyAAAAEQAIAAC/QsK6AAAAAQAcACCTwwAnAxkAJwMYACcDFwAKjkUACo5EAAJkfAACAGhNYWNpbnRvc2ggSEQ6VXNlcnM6AGt3YjEzMjE1OgBEb2N1bWVudHM6AFJlYWRpbmc6AFNjaWVuY2U6AHBhcGVyczoAQnJ1pzoAQ2hhcmFjdGVyaXppbmcgRW50YW5nbGVtZW50LnBkZgAOAEAAHwBDAGgAYQByAGEAYwB0AGUAcgBpAHoAaQBuAGcAIABFAG4AdABhAG4AZwBsAGUAbQBlAG4AdAAuAHAAZABmAA8AGgAMAE0AYQBjAGkAbgB0AG8AcwBoACAASABEABIAVVVzZXJzL2t3YjEzMjE1L0RvY3VtZW50cy9SZWFkaW5nL1NjaWVuY2UvcGFwZXJzL0JydcOfL0NoYXJhY3Rlcml6aW5nIEVudGFuZ2xlbWVudC5wZGYAABMAAS8AABUAAgAP//8AAIAG0hscHR5aJGNsYXNzbmFtZVgkY2xhc3Nlc11OU011dGFibGVEYXRhox0fIFZOU0RhdGFYTlNPYmplY3TSGxwiI1xOU0RpY3Rpb25hcnmiIiBfEA9OU0tleWVkQXJjaGl2ZXLRJidUcm9vdIABAAgAEQAaACMALQAyADcAQABGAE0AVQBgAGcAagBsAG4AcQBzAHUAdwCEAI4BOQE+AUYDWANaA18DagNzA4EDhQOMA5UDmgOnA6oDvAO/A8QAAAAAAAACAQAAAAAAAAAoAAAAAAAAAAAAAAAAAAADxg==}}
 
 @electronic{Terhal2001Detecting-Quant,
-	Abstract = {We review the criteria for separability and quantum entanglement, both in a bi�partite as well as a multipartite setting. We discuss Bell inequalities, entanglement witnesses, entropic inequalities, bound entanglement and several features of mul�tipartite entanglement. We indicate how these criteria bear on the experimental detection of quantum entanglement.},
+	Abstract = {We review the criteria for separability and quantum entanglement, both in a bi\00partite as well as a multipartite setting. We discuss Bell inequalities, entanglement witnesses, entropic inequalities, bound entanglement and several features of mul\00tipartite entanglement. We indicate how these criteria bear on the experimental detection of quantum entanglement.},
 	Author = {Terhal, B.M},
 	Date-Added = {2015-01-16 00:04:47 +0000},
 	Date-Modified = {2015-01-16 00:04:48 +0000},
@@ -12434,20 +12434,7 @@ categories [JS91] and dagger pivotal categories [Sel09].
 	Year = {2005},
 	Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QWS4uLy4uLy4uLy4uLy4uL0RvY3VtZW50cy9SZWFkaW5nL1NjaWVuY2UvcGFwZXJzL0NvZWNrZS9LaW5kZXJnYXJ0ZW4gUXVhbnR1bSBNZWNoYW5pY3MucGRm0hcLGBlXTlMuZGF0YU8RAhwAAAAAAhwAAgAADE1hY2ludG9zaCBIRAAAAAAAAAAAAAAAAAAAAM6YhwJIKwAAACCT1B9LaW5kZXJnYXJ0ZW4gUXVhbnR1bSMyMDk2RUQucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIJbtv2BpLwAAAAAAAAAAAAUABgAACSAAAAAAAAAAAAAAAAAAAAAGQ29lY2tlABAACAAAzph48gAAABEACAAAv2BNDwAAAAEAHAAgk9QAJwMZACcDGAAnAxcACo5FAAqORAACZHwAAgBqTWFjaW50b3NoIEhEOlVzZXJzOgBrd2IxMzIxNToARG9jdW1lbnRzOgBSZWFkaW5nOgBTY2llbmNlOgBwYXBlcnM6AENvZWNrZToAS2luZGVyZ2FydGVuIFF1YW50dW0jMjA5NkVELnBkZgAOAEYAIgBLAGkAbgBkAGUAcgBnAGEAcgB0AGUAbgAgAFEAdQBhAG4AdAB1AG0AIABNAGUAYwBoAGEAbgBpAGMAcwAuAHAAZABmAA8AGgAMAE0AYQBjAGkAbgB0AG8AcwBoACAASABEABIAWVVzZXJzL2t3YjEzMjE1L0RvY3VtZW50cy9SZWFkaW5nL1NjaWVuY2UvcGFwZXJzL0NvZWNrZS9LaW5kZXJnYXJ0ZW4gUXVhbnR1bSBNZWNoYW5pY3MucGRmAAATAAEvAAAVAAIAD///AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOAOoA7wD3AxcDGQMeAykDMgNAA0QDSwNUA1kDZgNpA3sDfgODAAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAAA4U=}}
 
-@article{Bennett2000Exact-and-asymp,
-	Abstract = {Hoping to simplify the classification of pure entangled states of multi �m�-partite quantum systems, we study exactly and asymptotically �in n� reversible transformations among nth tensor powers of such states �i.e., n copies of the state shared among the same m parties� under local quantum operations and classical communication �LOCC�. For exact transformations, we show that two states whose marginal one-party entropies agree are either locally unitarily equivalent or else LOCC incomparable. In particular we show that two tripartite Greenberger-Horne-Zeilinger states are LOCC incomparable to three bipartite Einstein-Podolsky-Rosen �EPR� states symmetrically shared among the three parties. Asymptotic transformations yield a simpler classification than exact transformations; for example, they allow all pure bipartite states to be characterized by a single parameter---their partial entropy---which may be interpreted as the number of EPR pairs asymptotically interconvertible to the state in question by LOCC transformations. We show that m-partite pure states having an m-way Schmidt decomposition are similarly parametrizable, with the partial entropy across any nontrivial partition representing the number of standard quantum superposition or ``cat'' states � |0>^ �m�+ |��1>^�m� asymptotically interconvertible to the state in question. For general m-partite states, partial entropies across different partitions need not be equal, and since partial entropies are conserved by asymptotically reversible LOCC operations, a multicomponent entanglement measure is needed, with each scalar component representing a different kind of entanglement, not asymptotically interconvertible to the other kinds. In particular we show that the m� = 4 cat state is not isentropic to, and therefore not asymptotically interconvertible to, any combination of bipartite and tripartite states shared among the four parties. Thus, although the m� = 4 cat state can be prepared from bipartite EPR states, the preparation process is necessarily irreversible, and remains so even asymptotically. For each number of parties m we define a minimal reversible entanglement generating set �MREGS� as a set of states of minimal cardinality sufficient to generate all m-partite pure states by asymptotically reversible LOCC transformations. Partial entropy arguments provide lower bounds on the size of the MREGS, but for m > �2 we know no upper bounds. We briefly consider several generalizations of LOCC transformations, including transformations with some probability of failure, transformations with the catalytic assistance of states other than the states we are trying to transform, and asymptotic LOCC transformations supplemented by a negligible � o(n) � amount of quantum communication. },
-	Author = {Bennett, C. H. and Popescu, S. and Rohrlich, D. and Smolin, J. A. and Thapliyal, A.V.},
-	Date-Added = {2015-01-16 00:04:47 +0000},
-	Date-Modified = {2015-01-16 00:04:48 +0000},
-	Journal = {Phys. Rev. A},
-	Keywords = {quantum computing; entanglement},
-	Local-Url = {/Users/kwb13215/Documents/Reading/Science/papers/Bennett/Exact and asymptotic measures of multipartite entanglement.pdf},
-	Month = {December},
-	Number = {012307},
-	Title = {Exact and asymptotic measures of multipartite entanglement},
-	Volume = {63},
-	Year = {2000},
-	Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8Qdi4uLy4uLy4uLy4uLy4uL0RvY3VtZW50cy9SZWFkaW5nL1NjaWVuY2UvcGFwZXJzL0Jlbm5ldHQvRXhhY3QgYW5kIGFzeW1wdG90aWMgbWVhc3VyZXMgb2YgbXVsdGlwYXJ0aXRlIGVudGFuZ2xlbWVudC5wZGbSFwsYGVdOUy5kYXRhTxECdAAAAAACdAACAAAMTWFjaW50b3NoIEhEAAAAAAAAAAAAAAAAAAAAzpiHAkgrAAAAIJOrH0V4YWN0IGFuZCBhc3ltcHRvdGljIzIwOTc0NS5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgl0W/chCWAAAAAAAAAAAABQAGAAAJIAAAAAAAAAAAAAAAAAAAAAdCZW5uZXR0AAAQAAgAAM6YePIAAAARAAgAAL9x9HYAAAABABwAIJOrACcDGQAnAxgAJwMXAAqORQAKjkQAAmR8AAIAa01hY2ludG9zaCBIRDpVc2VyczoAa3diMTMyMTU6AERvY3VtZW50czoAUmVhZGluZzoAU2NpZW5jZToAcGFwZXJzOgBCZW5uZXR0OgBFeGFjdCBhbmQgYXN5bXB0b3RpYyMyMDk3NDUucGRmAAAOAH4APgBFAHgAYQBjAHQAIABhAG4AZAAgAGEAcwB5AG0AcAB0AG8AdABpAGMAIABtAGUAYQBzAHUAcgBlAHMAIABvAGYAIABtAHUAbAB0AGkAcABhAHIAdABpAHQAZQAgAGUAbgB0AGEAbgBnAGwAZQBtAGUAbgB0AC4AcABkAGYADwAaAAwATQBhAGMAaQBuAHQAbwBzAGgAIABIAEQAEgB2VXNlcnMva3diMTMyMTUvRG9jdW1lbnRzL1JlYWRpbmcvU2NpZW5jZS9wYXBlcnMvQmVubmV0dC9FeGFjdCBhbmQgYXN5bXB0b3RpYyBtZWFzdXJlcyBvZiBtdWx0aXBhcnRpdGUgZW50YW5nbGVtZW50LnBkZgATAAEvAAAVAAIAD///AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOAQcBDAEUA4wDjgOTA54DpwO1A7kDwAPJA84D2wPeA/AD8wP4AAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAAA/o=}}
+
 
 @article{Vidal2002Computable-Meas,
 	Abstract = {We present a measure of entanglement that can be computed effectively for any mixed state of an arbitrary bipartite system. We show that it does not increase under local manipulations of the system, and use it to obtain a bound on the teleportation capacity and on the distillable entanglement of mixed states. },
@@ -12464,19 +12451,6 @@ categories [JS91] and dagger pivotal categories [Sel09].
 	Year = {2002},
 	Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QXC4uLy4uLy4uLy4uLy4uL0RvY3VtZW50cy9SZWFkaW5nL1NjaWVuY2UvcGFwZXJzL1ZpZGFsL0NvbXB1dGFibGUgTWVhc3VyZSBvZiBFbnRhbmdsZW1lbnQucGRm0hcLGBlXTlMuZGF0YU8RAiYAAAAAAiYAAgAADE1hY2ludG9zaCBIRAAAAAAAAAAAAAAAAAAAAM6YhwJIKwAAACCU4h9Db21wdXRhYmxlIE1lYXN1cmUgbyMyMDk1MTgucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIJUYv3IROgAAAAAAAAAAAAUABgAACSAAAAAAAAAAAAAAAAAAAAAFVmlkYWwAABAACAAAzph48gAAABEACAAAv3H1GgAAAAEAHAAglOIAJwMZACcDGAAnAxcACo5FAAqORAACZHwAAgBpTWFjaW50b3NoIEhEOlVzZXJzOgBrd2IxMzIxNToARG9jdW1lbnRzOgBSZWFkaW5nOgBTY2llbmNlOgBwYXBlcnM6AFZpZGFsOgBDb21wdXRhYmxlIE1lYXN1cmUgbyMyMDk1MTgucGRmAAAOAE4AJgBDAG8AbQBwAHUAdABhAGIAbABlACAATQBlAGEAcwB1AHIAZQAgAG8AZgAgAEUAbgB0AGEAbgBnAGwAZQBtAGUAbgB0AC4AcABkAGYADwAaAAwATQBhAGMAaQBuAHQAbwBzAGgAIABIAEQAEgBcVXNlcnMva3diMTMyMTUvRG9jdW1lbnRzL1JlYWRpbmcvU2NpZW5jZS9wYXBlcnMvVmlkYWwvQ29tcHV0YWJsZSBNZWFzdXJlIG9mIEVudGFuZ2xlbWVudC5wZGYAEwABLwAAFQACAA///wAAgAbSGxwdHlokY2xhc3NuYW1lWCRjbGFzc2VzXU5TTXV0YWJsZURhdGGjHR8gVk5TRGF0YVhOU09iamVjdNIbHCIjXE5TRGljdGlvbmFyeaIiIF8QD05TS2V5ZWRBcmNoaXZlctEmJ1Ryb290gAEACAARABoAIwAtADIANwBAAEYATQBVAGAAZwBqAGwAbgBxAHMAdQB3AIQAjgDtAPIA+gMkAyYDKwM2Az8DTQNRA1gDYQNmA3MDdgOIA4sDkAAAAAAAAAIBAAAAAAAAACgAAAAAAAAAAAAAAAAAAAOS}}
 
-@article{Miyake2003Classification-,
-	Abstract = {We find that multidimensional determinants ``hyperdeterminants,'' related to entanglement measures �the so-called concurrence, or 3-tangle for two or three qubits, respectively�, are derived from a duality between entangled states and separable states. By means of the hyperdeterminant and its singularities, the single copy of multipartite pure entangled states is classified into an onion structure of every closed subset, similar to that by the local rank in the bipartite case. This reveals how inequivalent multipartite entangled classes are partially ordered under local actions. In particular, the generic entangled class of the maximal dimension, distinguished as the nonzero hyperdeterminant, does not include the maximally entangled states in Bell's inequalities in general �e.g., in the n� >= 4 qubits�, contrary to the widely known bipartite or three-qubit cases. It suggests that not only are they never locally interconvertible with the majority of multipartite entangled states, but they would have no grounds for the canonical n-partite entangled states. Our classification is also useful for the mixed states.},
-	Author = {Miyake, A.},
-	Date-Added = {2015-01-16 00:04:47 +0000},
-	Date-Modified = {2015-01-16 00:04:48 +0000},
-	Journal = {Phys. Rev. A},
-	Keywords = {quantum computing, entanglement},
-	Local-Url = {/Users/kwb13215/Documents/Reading/Science/papers/Miyake/Classification of multipartite entangled states by multidimensional.pdf},
-	Title = {Classification of multipartite entangled states by multidimensional determinants},
-	Volume = {67},
-	Year = {2003},
-	Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8Qfi4uLy4uLy4uLy4uLy4uL0RvY3VtZW50cy9SZWFkaW5nL1NjaWVuY2UvcGFwZXJzL01peWFrZS9DbGFzc2lmaWNhdGlvbiBvZiBtdWx0aXBhcnRpdGUgZW50YW5nbGVkIHN0YXRlcyBieSBtdWx0aWRpbWVuc2lvbmFsLnBkZtIXCxgZV05TLmRhdGFPEQKKAAAAAAKKAAIAAAxNYWNpbnRvc2ggSEQAAAAAAAAAAAAAAAAAAADOmIcCSCsAAAAglH8fQ2xhc3NpZmljYXRpb24gb2YgbXUjMjA5NUFELnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACCVrb9yFHAAAAAAAAAAAAAFAAYAAAkgAAAAAAAAAAAAAAAAAAAABk1peWFrZQAQAAgAAM6YePIAAAARAAgAAL9x+FAAAAABABwAIJR/ACcDGQAnAxgAJwMXAAqORQAKjkQAAmR8AAIAak1hY2ludG9zaCBIRDpVc2VyczoAa3diMTMyMTU6AERvY3VtZW50czoAUmVhZGluZzoAU2NpZW5jZToAcGFwZXJzOgBNaXlha2U6AENsYXNzaWZpY2F0aW9uIG9mIG11IzIwOTVBRC5wZGYADgCQAEcAQwBsAGEAcwBzAGkAZgBpAGMAYQB0AGkAbwBuACAAbwBmACAAbQB1AGwAdABpAHAAYQByAHQAaQB0AGUAIABlAG4AdABhAG4AZwBsAGUAZAAgAHMAdABhAHQAZQBzACAAYgB5ACAAbQB1AGwAdABpAGQAaQBtAGUAbgBzAGkAbwBuAGEAbAAuAHAAZABmAA8AGgAMAE0AYQBjAGkAbgB0AG8AcwBoACAASABEABIAflVzZXJzL2t3YjEzMjE1L0RvY3VtZW50cy9SZWFkaW5nL1NjaWVuY2UvcGFwZXJzL01peWFrZS9DbGFzc2lmaWNhdGlvbiBvZiBtdWx0aXBhcnRpdGUgZW50YW5nbGVkIHN0YXRlcyBieSBtdWx0aWRpbWVuc2lvbmFsLnBkZgATAAEvAAAVAAIAD///AACABtIbHB0eWiRjbGFzc25hbWVYJGNsYXNzZXNdTlNNdXRhYmxlRGF0YaMdHyBWTlNEYXRhWE5TT2JqZWN00hscIiNcTlNEaWN0aW9uYXJ5oiIgXxAPTlNLZXllZEFyY2hpdmVy0SYnVHJvb3SAAQAIABEAGgAjAC0AMgA3AEAARgBNAFUAYABnAGoAbABuAHEAcwB1AHcAhACOAQ8BFAEcA6oDrAOxA7wDxQPTA9cD3gPnA+wD+QP8BA4EEQQWAAAAAAAAAgEAAAAAAAAAKAAAAAAAAAAAAAAAAAAABBg=}}
-
 @article{Scott2004Multipartite-en,
 	Author = {Scott, A.J.},
 	Date-Added = {2015-01-16 00:04:47 +0000},
@@ -12489,19 +12463,6 @@ categories [JS91] and dagger pivotal categories [Sel09].
 	Year = {2004},
 	Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8Qgy4uLy4uLy4uLy4uLy4uL0RvY3VtZW50cy9SZWFkaW5nL1NjaWVuY2UvcGFwZXJzL1Njb3R0L011bHRpcGFydGl0ZSBlbnRhbmdsZW1lbnQsIHF1YW50dW0tZXJyb3ItY29ycmVjdGluZyBjb2RlcywgYW5kIGVudGFuZ2xpbmcucGRm0hcLGBlXTlMuZGF0YU8RApwAAAAAApwAAgAADE1hY2ludG9zaCBIRAAAAAAAAAAAAAAAAAAAAM6YhwJIKwAAACCUuB9NdWx0aXBhcnRpdGUgZW50YW5nbCMyMDk1NUUucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIJVev3IZvAAAAAAAAAAAAAUABgAACSAAAAAAAAAAAAAAAAAAAAAFU2NvdHQAABAACAAAzph48gAAABEACAAAv3H9nAAAAAEAHAAglLgAJwMZACcDGAAnAxcACo5FAAqORAACZHwAAgBpTWFjaW50b3NoIEhEOlVzZXJzOgBrd2IxMzIxNToARG9jdW1lbnRzOgBSZWFkaW5nOgBTY2llbmNlOgBwYXBlcnM6AFNjb3R0OgBNdWx0aXBhcnRpdGUgZW50YW5nbCMyMDk1NUUucGRmAAAOAJwATQBNAHUAbAB0AGkAcABhAHIAdABpAHQAZQAgAGUAbgB0AGEAbgBnAGwAZQBtAGUAbgB0ACwAIABxAHUAYQBuAHQAdQBtAC0AZQByAHIAbwByAC0AYwBvAHIAcgBlAGMAdABpAG4AZwAgAGMAbwBkAGUAcwAsACAAYQBuAGQAIABlAG4AdABhAG4AZwBsAGkAbgBnAC4AcABkAGYADwAaAAwATQBhAGMAaQBuAHQAbwBzAGgAIABIAEQAEgCDVXNlcnMva3diMTMyMTUvRG9jdW1lbnRzL1JlYWRpbmcvU2NpZW5jZS9wYXBlcnMvU2NvdHQvTXVsdGlwYXJ0aXRlIGVudGFuZ2xlbWVudCwgcXVhbnR1bS1lcnJvci1jb3JyZWN0aW5nIGNvZGVzLCBhbmQgZW50YW5nbGluZy5wZGYAABMAAS8AABUAAgAP//8AAIAG0hscHR5aJGNsYXNzbmFtZVgkY2xhc3Nlc11OU011dGFibGVEYXRhox0fIFZOU0RhdGFYTlNPYmplY3TSGxwiI1xOU0RpY3Rpb25hcnmiIiBfEA9OU0tleWVkQXJjaGl2ZXLRJidUcm9vdIABAAgAEQAaACMALQAyADcAQABGAE0AVQBgAGcAagBsAG4AcQBzAHUAdwCEAI4BFAEZASEDwQPDA8gD0wPcA+oD7gP1A/4EAwQQBBMEJQQoBC0AAAAAAAACAQAAAAAAAAAoAAAAAAAAAAAAAAAAAAAELw==}}
 
-@article{Rigolin2005Quantum-Telepor,
-	Abstract = {We explicitly show a protocol in which an arbitrary two qubit state ��� =a�00� +b�01� +c�10� +d�11� is faithfully and deterministically teleported from Alice to Bob. We construct the 16 orthogonal generalized Bell states that can be used to teleport the two qubits. The local operations Bob must perform on his qubits in order to recover the teleported state are also constructed. They are restricted only to single-qubit gates. This means that a controlled-NOT gate is not necessary to complete the protocol. A generalization where N qubits are teleported is also shown. We define a generalized magic basis, which possesses interesting properties. These properties help us to suggest a generalized concurrence from which we construct a measure of entanglement that has a clear physical interpretation: A multipartite state has maximum entanglement if it is a genuine quantum teleportation channel. },
-	Author = {Rigolin, G.},
-	Date-Added = {2015-01-16 00:04:47 +0000},
-	Date-Modified = {2015-01-16 00:04:48 +0000},
-	Journal = {Phys. Rev. A},
-	Keywords = {quantum computing; entanglement},
-	Local-Url = {/Users/kwb13215/Documents/Reading/Science/papers/Rigolin/Quantum Teleportation of an Arbitrary two-qubit state.pdf},
-	Title = {Quantum Teleportation of an Arbitrary two-qubit state and its relation to multipartite entanglement},
-	Volume = {71},
-	Year = {2005},
-	Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QcS4uLy4uLy4uLy4uLy4uL0RvY3VtZW50cy9SZWFkaW5nL1NjaWVuY2UvcGFwZXJzL1JpZ29saW4vUXVhbnR1bSBUZWxlcG9ydGF0aW9uIG9mIGFuIEFyYml0cmFyeSB0d28tcXViaXQgc3RhdGUucGRm0hcLGBlXTlMuZGF0YU8RAmYAAAAAAmYAAgAADE1hY2ludG9zaCBIRAAAAAAAAAAAAAAAAAAAAM6YhwJIKwAAACCUrB9RdWFudHVtIFRlbGVwb3J0YXRpbyMyMDk1NkQucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIJVtv3IasgAAAAAAAAAAAAUABgAACSAAAAAAAAAAAAAAAAAAAAAHUmlnb2xpbgAAEAAIAADOmHjyAAAAEQAIAAC/cf6SAAAAAQAcACCUrAAnAxkAJwMYACcDFwAKjkUACo5EAAJkfAACAGtNYWNpbnRvc2ggSEQ6VXNlcnM6AGt3YjEzMjE1OgBEb2N1bWVudHM6AFJlYWRpbmc6AFNjaWVuY2U6AHBhcGVyczoAUmlnb2xpbjoAUXVhbnR1bSBUZWxlcG9ydGF0aW8jMjA5NTZELnBkZgAADgB0ADkAUQB1AGEAbgB0AHUAbQAgAFQAZQBsAGUAcABvAHIAdABhAHQAaQBvAG4AIABvAGYAIABhAG4AIABBAHIAYgBpAHQAcgBhAHIAeQAgAHQAdwBvAC0AcQB1AGIAaQB0ACAAcwB0AGEAdABlAC4AcABkAGYADwAaAAwATQBhAGMAaQBuAHQAbwBzAGgAIABIAEQAEgBxVXNlcnMva3diMTMyMTUvRG9jdW1lbnRzL1JlYWRpbmcvU2NpZW5jZS9wYXBlcnMvUmlnb2xpbi9RdWFudHVtIFRlbGVwb3J0YXRpb24gb2YgYW4gQXJiaXRyYXJ5IHR3by1xdWJpdCBzdGF0ZS5wZGYAABMAAS8AABUAAgAP//8AAIAG0hscHR5aJGNsYXNzbmFtZVgkY2xhc3Nlc11OU011dGFibGVEYXRhox0fIFZOU0RhdGFYTlNPYmplY3TSGxwiI1xOU0RpY3Rpb25hcnmiIiBfEA9OU0tleWVkQXJjaGl2ZXLRJidUcm9vdIABAAgAEQAaACMALQAyADcAQABGAE0AVQBgAGcAagBsAG4AcQBzAHUAdwCEAI4BAgEHAQ8DeQN7A4ADiwOUA6IDpgOtA7YDuwPIA8sD3QPgA+UAAAAAAAACAQAAAAAAAAAoAAAAAAAAAAAAAAAAAAAD5w==}}
-
 @article{Partovi2004Universal-Meaas,
 	Author = {Partovi, H.},
 	Date-Added = {2015-01-16 00:04:47 +0000},